Mucosal vaccination against tuberculosis using inert bioparticles.
نویسندگان
چکیده
Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens.
منابع مشابه
Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in pro...
متن کاملIntranasal Immunization with DnaK Protein Induces Protective Mucosal Immunity against Tuberculosis in CD4-Depleted Mice
Mycobacterium tuberculosis (Mtb) remains a global health challenge due to the limited efficacy of the Mtb vaccine in current use, Bacillus Calmette-Guérin (BCG). To date, there is no available vaccine for immunocompromised individuals. Thus, there is an urgent need to develop a new vaccine candidate which can induce mucosal immunity in hosts with different immune statuses. DnaK (HSP70) has been...
متن کاملApproaches to tuberculosis mucosal vaccine development using nanoparticles and microparticles: a review.
Next-generation vaccines for tuberculosis should be designed to prevent the infection and to achieve sterile eradication of Mycobacterium tuberculosis. Mucosal vaccination is a needle-free vaccine strategy that provides protective immunity against pathogenic bacteria and viruses in both mucosal and systemic compartments, being a promising alternative to current tuberculosis vaccines. Micro and ...
متن کاملSendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice
Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant ant...
متن کاملMucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization.
Genetic immunization holds great promise for future vaccination against mucosal infectious diseases. However, parenteral genetic immunization is ineffective in control of mucosal intracellular infections, and the underlying mechanisms have remained unclear. By using a model of parenteral i.m. genetic immunization and pulmonary tuberculosis (TB), we have investigated the mechanisms that determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 81 11 شماره
صفحات -
تاریخ انتشار 2013